Programmer sans <math.h>

Modérateur : Dehas

Avatar du membre
sylvainmahe
Bicopter
Messages : 48
Enregistré le : jeu. 3 juil. 2014 18:21
Réputation : 4

Programmer sans <math.h>

Message non lu par sylvainmahe »

Bonjour ;)

Je souhaite partager avec vous un travail amateur mais autodidacte que j'ai titré : Programmer sans <math.h>

(cette proposition s'adresse au langage C++ à destination de microcontrôleurs, mais est facilement applicable au C ou à tout autre langage de programmation)


En électronique numérique embarquée qui met en œuvre des calculateurs programmables, et plus largement en programmation générale C++ (le langage utilisé pour écrire les fonctions énoncées ici), la logique pure est généralement accompagnée de calculs arithmétiques pour mener à bien la plupart des projets. Pour se faire, les calculateurs utilisés (soit les microcontrôleurs) sont équipés chacun d'une unité arithmétique et logique, partie du circuit intégré dédiée à de telles opérations, mais ce matériel ne permet pas d'effectuer des opérations arithmétiques autres que les calculs élémentaires, soit les additions, les soustractions, les multiplications, ou les divisions :

Comprendre que des opérations plus complexes comme par exemple sinus ou cosinus (que l'on retrouve habituellement dans les calculatrices modernes), ne sont pas câblées dans ce type de circuit intégré (comme c'est le cas dans la majorité des microcontrôleurs).

En conséquence, les opérations mathématiques plus élaborées doivent être écrites manuellement lors de la programmation logicielle, ceci en utilisant un certain nombre d'instructions logiques de base (structures conditionnelles, comparaisons, décalages) et d'instructions arithmétiques simples (additions, soustractions, multiplications, et divisions), seules disponibles dans les architectures matérielles des microcontrôleurs.

Cette recherche et construction logicielle effectuée, toutes les opérations (dont les ensembles constituent les algorithmes) qui œuvrent dans le fonctionnement intime de sinus ou cosinus (pour reprendre l'exemple) peuvent pour une question pratique de lisibilité et portabilité du programme être encapsulées dans des fonctions autonomes dédiées, autrement-dit regroupées dans des blocs de code distincts contenant chacun toutes les opérations nécessaires à leur fonctionnement interne, de sorte de pouvoir à posteriori en faire usage facilement en un minimum de lignes de programmation, ceci sans avoir besoin de ressources annexes externes. C'est ce que permettent les fonctions mathématiques décrites ci-dessous.

Descriptif des fonctions mathématiques :

- floor : arrondit un nombre décimal à l'entier inférieur.
- round : arrondit un nombre décimal à l'entier le plus proche.
- ceil : arrondit un nombre décimal à l'entier supérieur.
- curve : créé des interpolations linéaires ou exponentielles de courbes.
- wurve : créé des interpolations linéaires ou exponentielles dissymétriques de courbes.
- range : cadre une valeur dans un intervalle.
- center : calcule la moyenne de deux valeurs.
- pow : calcule la puissance d'un nombre.
- sqrt : calcule la racine carrée d'un nombre.
- fact : calcule la factorielle d'un nombre.
- sin : trouve le sinus d'un angle.
- cos : trouve le cosinus d'un angle.
- tan : trouve la tangente d'un angle.
- arcsin : trouve l'angle à partir d'un sinus.
- arccos : trouve l'angle à partir d'un cosinus.
- arctan : trouve l'angle à partir d'une tangente.
- arctan2 : trouve l'angle à partir de la tangente de deux arguments x et y.

Il est important d'appréhender que les fonctions mathématiques implémentées ne sont qu'une des façons possibles d'effectuer les calculs et résoudre les fonctions énoncées, ceci dans un certain langage de programmation (le C++), et d'une manière subjective avec une approche et une résolution des problématiques tout à fait singulière et arbitraire, modeste expression partagée libre et ouverte de son auteur.




Détails des fonctions
Fonction floor :

Code : Tout sélectionner

signed long floor (const float VALUE)
{
	signed long value = 0;
	
	if (VALUE <= 0)
	{
		value = VALUE - 1.0;
	}
	else
	{
		value = VALUE;
	}
	
	return value;
}
Fonction round :

Code : Tout sélectionner

signed long round (const float VALUE)
{
	signed long value = 0;
	
	if (VALUE <= 0)
	{
		value = VALUE - 0.5;
	}
	else
	{
		value = VALUE + 0.5;
	}
	
	return value;
}
Fonction ceil :

Code : Tout sélectionner

signed long ceil (const float VALUE)
{
	signed long value = 0;
	
	if (VALUE <= 0)
	{
		value = VALUE;
	}
	else
	{
		value = VALUE + 1.0;
	}
	
	return value;
}
Fonction curve :

Code : Tout sélectionner

float curve (const float POSITION_START, const float POSITION_CURRENT, const float POSITION_END, const float INTERPOLATION_START, const float INTERPOLATION_END, const float CURVE)
{
	float value = 0;
	
	if ((POSITION_START < POSITION_END && POSITION_CURRENT <= POSITION_START) || (POSITION_START > POSITION_END && POSITION_CURRENT >= POSITION_START))
	{
		value = INTERPOLATION_START;
	}
	else if ((POSITION_START < POSITION_END && POSITION_CURRENT >= POSITION_END) || (POSITION_START > POSITION_END && POSITION_CURRENT <= POSITION_END))
	{
		value = INTERPOLATION_END;
	}
	else
	{
		if (INTERPOLATION_END > INTERPOLATION_START)
		{
			if (CURVE == 0)
			{
				value = INTERPOLATION_START + ((INTERPOLATION_END - INTERPOLATION_START) * ((POSITION_CURRENT - POSITION_START) / (POSITION_END - POSITION_START)));
			}
			else if (CURVE > 0)
			{
				value = INTERPOLATION_START + (((INTERPOLATION_END - INTERPOLATION_START) * ((POSITION_CURRENT - POSITION_START) / (POSITION_END - POSITION_START))) / ((CURVE + 1.0) - (CURVE * ((POSITION_CURRENT - POSITION_START) / (POSITION_END - POSITION_START)))));
			}
			else
			{
				value = INTERPOLATION_END - (((INTERPOLATION_END - INTERPOLATION_START) * ((POSITION_CURRENT - POSITION_END) / (POSITION_START - POSITION_END))) / (1.0 + (-CURVE * ((POSITION_CURRENT - POSITION_START) / (POSITION_END - POSITION_START)))));
			}
		}
		else
		{
			if (CURVE == 0)
			{
				value = INTERPOLATION_START - ((INTERPOLATION_START - INTERPOLATION_END) * ((POSITION_CURRENT - POSITION_START) / (POSITION_END - POSITION_START)));
			}
			else if (CURVE > 0)
			{
				value = INTERPOLATION_START - (((INTERPOLATION_START - INTERPOLATION_END) * ((POSITION_CURRENT - POSITION_START) / (POSITION_END - POSITION_START))) / ((CURVE + 1.0) - (CURVE * ((POSITION_CURRENT - POSITION_START) / (POSITION_END - POSITION_START)))));
			}
			else
			{
				value = INTERPOLATION_END + (((INTERPOLATION_START - INTERPOLATION_END) * ((POSITION_CURRENT - POSITION_END) / (POSITION_START - POSITION_END))) / (1.0 + (-CURVE * ((POSITION_CURRENT - POSITION_START) / (POSITION_END - POSITION_START)))));
			}
		}
	}
	
	return value;
}
Fonction wurve :

Code : Tout sélectionner

float wurve (const float POSITION_START, const float POSITION_CURRENT, const float POSITION_END, const float INTERPOLATION_START, const float INTERPOLATION_CENTER, const float INTERPOLATION_END, const float CURVE_START, const float CURVE_END)
{
	const float POSITION_CENTER = POSITION_START + ((POSITION_END - POSITION_START) / 2.0);
	float value = 0;
	
	if ((POSITION_START < POSITION_END && POSITION_CURRENT < POSITION_CENTER) || (POSITION_START > POSITION_END && POSITION_CURRENT > POSITION_CENTER))
	{
		if ((POSITION_START < POSITION_CENTER && POSITION_CURRENT <= POSITION_START) || (POSITION_START > POSITION_CENTER && POSITION_CURRENT >= POSITION_START))
		{
			value = INTERPOLATION_START;
		}
		else if ((POSITION_START < POSITION_CENTER && POSITION_CURRENT >= POSITION_CENTER) || (POSITION_START > POSITION_CENTER && POSITION_CURRENT <= POSITION_CENTER))
		{
			value = INTERPOLATION_CENTER;
		}
		else
		{
			if (INTERPOLATION_CENTER > INTERPOLATION_START)
			{
				if (CURVE_START == 0)
				{
					value = INTERPOLATION_START + ((INTERPOLATION_CENTER - INTERPOLATION_START) * ((POSITION_CURRENT - POSITION_START) / (POSITION_CENTER - POSITION_START)));
				}
				else if (CURVE_START > 0)
				{
					value = INTERPOLATION_CENTER - (((INTERPOLATION_CENTER - INTERPOLATION_START) * ((POSITION_CURRENT - POSITION_CENTER) / (POSITION_START - POSITION_CENTER))) / (1.0 + (CURVE_START * ((POSITION_CURRENT - POSITION_START) / (POSITION_CENTER - POSITION_START)))));
				}
				else
				{
					value = INTERPOLATION_START + (((INTERPOLATION_CENTER - INTERPOLATION_START) * ((POSITION_CURRENT - POSITION_START) / (POSITION_CENTER - POSITION_START))) / ((-CURVE_START + 1.0) - (-CURVE_START * ((POSITION_CURRENT - POSITION_START) / (POSITION_CENTER - POSITION_START)))));
				}
			}
			else
			{
				if (CURVE_START == 0)
				{
					value = INTERPOLATION_START - ((INTERPOLATION_START - INTERPOLATION_CENTER) * ((POSITION_CURRENT - POSITION_START) / (POSITION_CENTER - POSITION_START)));
				}
				else if (CURVE_START > 0)
				{
					value = INTERPOLATION_CENTER + (((INTERPOLATION_START - INTERPOLATION_CENTER) * ((POSITION_CURRENT - POSITION_CENTER) / (POSITION_START - POSITION_CENTER))) / (1.0 + (CURVE_START * ((POSITION_CURRENT - POSITION_START) / (POSITION_CENTER - POSITION_START)))));
				}
				else
				{
					value = INTERPOLATION_START - (((INTERPOLATION_START - INTERPOLATION_CENTER) * ((POSITION_CURRENT - POSITION_START) / (POSITION_CENTER - POSITION_START))) / ((-CURVE_START + 1.0) - (-CURVE_START * ((POSITION_CURRENT - POSITION_START) / (POSITION_CENTER - POSITION_START)))));
				}
			}
		}
	}
	else if ((POSITION_START < POSITION_END && POSITION_CURRENT > POSITION_CENTER) || (POSITION_START > POSITION_END && POSITION_CURRENT < POSITION_CENTER))
	{
		if ((POSITION_CENTER < POSITION_END && POSITION_CURRENT <= POSITION_CENTER) || (POSITION_CENTER > POSITION_END && POSITION_CURRENT >= POSITION_CENTER))
		{
			value = INTERPOLATION_CENTER;
		}
		else if ((POSITION_CENTER < POSITION_END && POSITION_CURRENT >= POSITION_END) || (POSITION_CENTER > POSITION_END && POSITION_CURRENT <= POSITION_END))
		{
			value = INTERPOLATION_END;
		}
		else
		{
			if (INTERPOLATION_END > INTERPOLATION_CENTER)
			{
				if (CURVE_END == 0)
				{
					value = INTERPOLATION_CENTER + ((INTERPOLATION_END - INTERPOLATION_CENTER) * ((POSITION_CURRENT - POSITION_CENTER) / (POSITION_END - POSITION_CENTER)));
				}
				else if (CURVE_END > 0)
				{
					value = INTERPOLATION_CENTER + (((INTERPOLATION_END - INTERPOLATION_CENTER) * ((POSITION_CURRENT - POSITION_CENTER) / (POSITION_END - POSITION_CENTER))) / ((CURVE_END + 1.0) - (CURVE_END * ((POSITION_CURRENT - POSITION_CENTER) / (POSITION_END - POSITION_CENTER)))));
				}
				else
				{
					value = INTERPOLATION_END - (((INTERPOLATION_END - INTERPOLATION_CENTER) * ((POSITION_CURRENT - POSITION_END) / (POSITION_CENTER - POSITION_END))) / (1.0 + (-CURVE_END * ((POSITION_CURRENT - POSITION_CENTER) / (POSITION_END - POSITION_CENTER)))));
				}
			}
			else
			{
				if (CURVE_END == 0)
				{
					value = INTERPOLATION_CENTER - ((INTERPOLATION_CENTER - INTERPOLATION_END) * ((POSITION_CURRENT - POSITION_CENTER) / (POSITION_END - POSITION_CENTER)));
				}
				else if (CURVE_END > 0)
				{
					value = INTERPOLATION_CENTER - (((INTERPOLATION_CENTER - INTERPOLATION_END) * ((POSITION_CURRENT - POSITION_CENTER) / (POSITION_END - POSITION_CENTER))) / ((CURVE_END + 1.0) - (CURVE_END * ((POSITION_CURRENT - POSITION_CENTER) / (POSITION_END - POSITION_CENTER)))));
				}
				else
				{
					value = INTERPOLATION_END + (((INTERPOLATION_CENTER - INTERPOLATION_END) * ((POSITION_CURRENT - POSITION_END) / (POSITION_CENTER - POSITION_END))) / (1.0 + (-CURVE_END * ((POSITION_CURRENT - POSITION_CENTER) / (POSITION_END - POSITION_CENTER)))));
				}
			}
		}
	}
	else
	{
		value = INTERPOLATION_CENTER;
	}
	
	return value;
}
Fonction range :

Code : Tout sélectionner

float range (const float RANGE_START, const float VALUE_CURRENT, const float RANGE_END)
{
	float value = 0;
	
	if (RANGE_START < RANGE_END)
	{
		if (VALUE_CURRENT <= RANGE_START)
		{
			value = RANGE_START;
		}
		else if (VALUE_CURRENT >= RANGE_END)
		{
			value = RANGE_END;
		}
		else
		{
			value = VALUE_CURRENT;
		}
	}
	else if (RANGE_START > RANGE_END)
	{
		if (VALUE_CURRENT <= RANGE_END)
		{
			value = RANGE_END;
		}
		else if (VALUE_CURRENT >= RANGE_START)
		{
			value = RANGE_START;
		}
		else
		{
			value = VALUE_CURRENT;
		}
	}
	else
	{
		value = RANGE_START;
	}
	
	return value;
}
Fonction center :

Code : Tout sélectionner

float center (const float VALUE_START, const float VALUE_END)
{
	float value = 0;
	
	if (VALUE_START == VALUE_END)
	{
		value = VALUE_START;
	}
	else
	{
		value = VALUE_START + ((VALUE_END - VALUE_START) / 2.0);
	}
	
	return value;
}
Fonction pow :

Code : Tout sélectionner

float pow (const float VALUE, const signed long EXPONENT)
{
	signed long iterationPower = 0;
	float value = 0;
	
	if (EXPONENT < 0)
	{
		if (VALUE < 0)
		{
			value = -VALUE;
		}
		else
		{
			value = VALUE;
		}
		
		for (iterationPower = -1; iterationPower > EXPONENT; iterationPower--)
		{
			value *= VALUE;
		}
		
		value = 1.0 / value;
		
		if (VALUE < 0)
		{
			value = -value;
		}
	}
	else if (EXPONENT == 0)
	{
		if (VALUE < 0)
		{
			value = -1;
		}
		else
		{
			value = 1;
		}
	}
	else
	{
		if (VALUE < 0)
		{
			value = -VALUE;
		}
		else
		{
			value = VALUE;
		}
		
		for (iterationPower = 1; iterationPower < EXPONENT; iterationPower++)
		{
			value *= VALUE;
		}
		
		if (VALUE < 0)
		{
			value = -value;
		}
	}
	
	return value;
}
Fonction sqrt :

Code : Tout sélectionner

float sqrt (const float RADICAND)
{
	unsigned char iterationPrecision = 0;
	float searchDecimal = 0.1;
	float foundDecimal = 0;
	bool quickSearch = false;
	unsigned long searchInteger = 1000;
	unsigned int incrementInteger = 1000;
	float sr1 = 0;
	float sr2 = 0;
	float sr3 = 0;
	float value = 0;
	
	if (RADICAND < 1)
	{
		while (searchDecimal * searchDecimal <= RADICAND)
		{
			searchDecimal += 0.1;
		}
		
		for (iterationPrecision = 0; iterationPrecision < 4; iterationPrecision++)
		{
			foundDecimal = ((RADICAND / searchDecimal) + searchDecimal) / 2.0;
			searchDecimal = foundDecimal;
		}
		
		value = foundDecimal;
	}
	else if (RADICAND == 1)
	{
		value = 1;
	}
	else
	{
		while (quickSearch == false)
		{
			while (searchInteger * searchInteger <= RADICAND)
			{
				searchInteger += incrementInteger;
			}
			
			searchInteger -= incrementInteger;
			
			if (incrementInteger == 1)
			{
				quickSearch = true;
			}
			else
			{
				incrementInteger /= 10;
			}
		}
		
		sr1 = RADICAND - (float (searchInteger) * float (searchInteger));
		sr2 = sr1 / (2.0 * float (searchInteger));
		sr3 = float (searchInteger) + sr2;
		
		value = sr3 - ((sr2 * sr2) / (2.0 * sr3));
	}
	
	return value;
}
Fonction fact :

Code : Tout sélectionner

unsigned long long fact (const unsigned long INTEGER)
{
	unsigned long iterationFactorial = 1;
	unsigned long long value = 1;
	
	for (iterationFactorial = 1; iterationFactorial <= INTEGER; iterationFactorial++)
	{
		value *= iterationFactorial;
	}
	
	return value;
}
Fonction sin :

Code : Tout sélectionner

float sin (const float ANGLE)
{
	unsigned long iterationModulo = 0;
	unsigned long foundMultiply = 0;
	bool quickSearch = false;
	float angle = 0;
	float alpha = 0;
	float alpha2 = 0;
	float alpha3 = 0;
	float alpha5 = 0;
	float sinus = 0;
	
	if (ANGLE >= -180 && ANGLE <= 180)
	{
		angle = ANGLE;
	}
	else if (ANGLE < -180)
	{
		while (quickSearch == false)
		{
			for (iterationModulo = 1; ANGLE + (360.0 * (float (foundMultiply) + float (iterationModulo))) < -180; iterationModulo *= 10)
			{
			}
			
			if (iterationModulo == 1)
			{
				quickSearch = true;
			}
			else
			{
				foundMultiply += iterationModulo / 10ul;
			}
		}
		
		foundMultiply++;
		
		angle = ANGLE + (360.0 * float (foundMultiply));
	}
	else
	{
		while (quickSearch == false)
		{
			for (iterationModulo = 1; ANGLE - (360.0 * (float (foundMultiply) + float (iterationModulo))) > 180; iterationModulo *= 10)
			{
			}
			
			if (iterationModulo == 1)
			{
				quickSearch = true;
			}
			else
			{
				foundMultiply += iterationModulo / 10ul;
			}
		}
		
		foundMultiply++;
		
		angle = ANGLE - (360.0 * float (foundMultiply));
	}
	
	if (angle == -90 || angle == 270)
	{
		sinus = -1;
	}
	else if (angle == -270 || angle == 90)
	{
		sinus = 1;
	}
	else if (angle != -360 && angle != -180 && angle != 0 && angle != 180 && angle != 360)
	{
		alpha = angle * 0.0174532925199432;
		
		alpha2 = alpha * alpha;
		alpha3 = alpha2 * alpha;
		alpha5 = alpha2 * alpha3;
		
		sinus = alpha - (alpha3 / 6.0) + (alpha5 / 120.0) - ((alpha2 * alpha5) / 5040.0);
	}
	
	return sinus;
}
Fonction cos :

Code : Tout sélectionner

float cos (const float ANGLE)
{
	unsigned long iterationModulo = 0;
	unsigned long foundMultiply = 0;
	bool quickSearch = false;
	float angle = 0;
	float alpha = 0;
	float alpha2 = 0;
	float alpha4 = 0;
	float cosinus = 0;
	
	if (ANGLE >= -180 && ANGLE <= 180)
	{
		angle = ANGLE;
	}
	else if (ANGLE < -180)
	{
		while (quickSearch == false)
		{
			for (iterationModulo = 1; ANGLE + (360.0 * (float (foundMultiply) + float (iterationModulo))) < -180; iterationModulo *= 10)
			{
			}
			
			if (iterationModulo == 1)
			{
				quickSearch = true;
			}
			else
			{
				foundMultiply += iterationModulo / 10ul;
			}
		}
		
		foundMultiply++;
		
		angle = ANGLE + (360.0 * float (foundMultiply));
	}
	else
	{
		while (quickSearch == false)
		{
			for (iterationModulo = 1; ANGLE - (360.0 * (float (foundMultiply) + float (iterationModulo))) > 180; iterationModulo *= 10)
			{
			}
			
			if (iterationModulo == 1)
			{
				quickSearch = true;
			}
			else
			{
				foundMultiply += iterationModulo / 10ul;
			}
		}
		
		foundMultiply++;
		
		angle = ANGLE - (360.0 * float (foundMultiply));
	}
	
	if (angle == -180 || angle == 180)
	{
		cosinus = -1;
	}
	else if (angle == -360 || angle == 0 || angle == 360)
	{
		cosinus = 1;
	}
	else if (angle != -270 && angle != -90 && angle != 90 && angle != 270)
	{
		alpha = angle * 0.0174532925199432;
		
		alpha2 = alpha * alpha;
		alpha4 = alpha2 * alpha2;
		
		cosinus = 1.0 - ((alpha2 / 2.0) - (alpha4 / 24.0) + ((alpha2 * alpha4) / 720.0) - ((alpha4 * alpha4) / 40320.0));
	}
	
	return cosinus;
}
Fonction tan :

Code : Tout sélectionner

float tan (const float ANGLE)
{
	unsigned long iterationModulo = 0;
	unsigned long foundMultiply = 0;
	bool quickSearch = false;
	float angle = 0;
	float alpha = 0;
	float alpha2 = 0;
	float alpha3 = 0;
	float alpha5 = 0;
	float tangent = 0;
	
	if (ANGLE >= -90 && ANGLE <= 90)
	{
		angle = ANGLE;
	}
	else if (ANGLE < -90)
	{
		while (quickSearch == false)
		{
			for (iterationModulo = 1; ANGLE + (180.0 * (float (foundMultiply) + float (iterationModulo))) < -90; iterationModulo *= 10)
			{
			}
			
			if (iterationModulo == 1)
			{
				quickSearch = true;
			}
			else
			{
				foundMultiply += iterationModulo / 10ul;
			}
		}
		
		foundMultiply++;
		
		angle = ANGLE + (180.0 * float (foundMultiply));
	}
	else
	{
		while (quickSearch == false)
		{
			for (iterationModulo = 1; ANGLE - (180.0 * (float (foundMultiply) + float (iterationModulo))) > 90; iterationModulo *= 10)
			{
			}
			
			if (iterationModulo == 1)
			{
				quickSearch = true;
			}
			else
			{
				foundMultiply += iterationModulo / 10ul;
			}
		}
		
		foundMultiply++;
		
		angle = ANGLE - (180.0 * float (foundMultiply));
	}
	
	if (angle == -45)
	{
		tangent = -1;
	}
	else if (angle == -90 || angle == 0 || angle == 90)
	{
		tangent = 0;
	}
	else if (angle == 45)
	{
		tangent = 1;
	}
	else
	{
		if (angle > -45 && angle < 45)
		{
			alpha = angle * 0.0174532925199432;
		}
		else
		{
			if (angle < 0)
			{
				alpha = (-90.0 - angle) * 0.0174532925199432;
			}
			else
			{
				alpha = (90.0 - angle) * 0.0174532925199432;
			}
		}
		
		alpha2 = alpha * alpha;
		alpha3 = alpha2 * alpha;
		alpha5 = alpha2 * alpha3;
		
		if (angle > -45 && angle < 45)
		{
			tangent = alpha + ((alpha3 / 3.0) + ((2.0 * alpha5) / 15.0) + ((17.0 * (alpha5 * alpha2)) / 315.0));
		}
		else
		{
			tangent = 1.0 / (alpha + ((alpha3 / 3.0) + ((2.0 * alpha5) / 15.0) + ((17.0 * (alpha5 * alpha2)) / 315.0)));
		}
	}
	
	return tangent;
}
Fonction arcsin :

Code : Tout sélectionner

float arcsin (const float SINUS)
{
	float angle = 0;
	float anglePrevious = 0;
	float sinus = 0;
	float sinusPositive = 0;
	float alpha = 0;
	float alpha2 = 0;
	float alpha3 = 0;
	float alpha5 = 0;
	float incrementAngle = 10;
	unsigned char decimal = 0;
	unsigned char error = 0;
	bool quickSearch = false;
	
	if (SINUS <= -1)
	{
		angle = -90;
	}
	else if (SINUS == 0)
	{
		angle = 0;
	}
	else if (SINUS >= 1)
	{
		angle = 90;
	}
	else
	{
		if (SINUS < 0)
		{
			sinusPositive = -SINUS;
		}
		else
		{
			sinusPositive = SINUS;
		}
		
		while (quickSearch == false)
		{
			alpha = angle * 0.0174532925199432;
			
			alpha2 = alpha * alpha;
			alpha3 = alpha2 * alpha;
			alpha5 = alpha2 * alpha3;
			
			sinus = alpha - (alpha3 / 6.0) + (alpha5 / 120.0) - ((alpha2 * alpha5) / 5040.0);
			
			if (sinus < sinusPositive && incrementAngle >= 1)
			{
				anglePrevious = angle;
				angle += incrementAngle;
			}
			else if (sinus < sinusPositive && incrementAngle < 1 && error < 9)
			{
				anglePrevious = angle;
				angle += incrementAngle;
				
				error++;
			}
			else if (sinus == sinusPositive || decimal == 4 + 1)
			{
				quickSearch = true;
			}
			else
			{
				incrementAngle /= 10;
				angle = anglePrevious + incrementAngle;
				
				decimal++;
				error = 0;
			}
			
			if (angle > 90.0001)
			{
				angle = 89.9999;
				quickSearch = true;
			}
		}
		
		if (SINUS < 0)
		{
			angle = -angle;
		}
	}
	
	return angle;
}
Fonction arccos :

Code : Tout sélectionner

float arccos (const float COSINUS)
{
	float angle = 0;
	float anglePrevious = 0;
	float cosinus = 0;
	float cosinusPositive = 0;
	float alpha = 0;
	float alpha2 = 0;
	float alpha4 = 0;
	float incrementAngle = 10;
	unsigned char decimal = 0;
	unsigned char error = 0;
	bool quickSearch = false;
	
	if (COSINUS <= -1)
	{
		angle = 180;
	}
	else if (COSINUS == 0)
	{
		angle = 90;
	}
	else if (COSINUS >= 1)
	{
		angle = 0;
	}
	else
	{
		if (COSINUS < 0)
		{
			cosinusPositive = -COSINUS;
		}
		else
		{
			cosinusPositive = COSINUS;
		}
		
		while (quickSearch == false)
		{
			alpha = angle * 0.0174532925199432;
			
			alpha2 = alpha * alpha;
			alpha4 = alpha2 * alpha2;
			
			cosinus = 1.0 - ((alpha2 / 2.0) - (alpha4 / 24.0) + ((alpha2 * alpha4) / 720.0) - ((alpha4 * alpha4) / 40320.0));
			
			if (cosinus > cosinusPositive && incrementAngle >= 1)
			{
				anglePrevious = angle;
				angle += incrementAngle;
			}
			else if (cosinus > cosinusPositive && incrementAngle < 1 && error < 9)
			{
				anglePrevious = angle;
				angle += incrementAngle;
				
				error++;
			}
			else if (cosinus == cosinusPositive || decimal == 4 + 1)
			{
				quickSearch = true;
			}
			else
			{
				incrementAngle /= 10;
				angle = anglePrevious + incrementAngle;
				
				decimal++;
				error = 0;
			}
			
			if (angle > 90.0001)
			{
				angle = 89.9999;
				quickSearch = true;
			}
		}
		
		if (COSINUS < 0)
		{
			angle = 180.0 - angle;
		}
	}
	
	return angle;
}
Fonction arctan :

Code : Tout sélectionner

float arctan (const float TANGENT)
{
	float angle = 0;
	float anglePrevious = 0;
	float sinus = 0;
	float cosinus = 0;
	float tangent = 0;
	float tangentPositive = 0;
	float alpha = 0;
	float alpha2 = 0;
	float alpha3 = 0;
	float alpha4 = 0;
	float alpha5 = 0;
	float incrementAngle = 10;
	unsigned char decimal = 0;
	unsigned char error = 0;
	bool quickSearch = false;
	
	if (TANGENT <= -9999999999999999)
	{
		angle = -90;
	}
	else if (TANGENT == -1)
	{
		angle = -45;
	}
	else if (TANGENT == 0)
	{
		angle = 0;
	}
	else if (TANGENT == 1)
	{
		angle = 45;
	}
	else if (TANGENT >= 9999999999999999)
	{
		angle = 90;
	}
	else
	{
		if (TANGENT < 0)
		{
			tangentPositive = -TANGENT;
		}
		else
		{
			tangentPositive = TANGENT;
		}
		
		while (quickSearch == false)
		{
			alpha = angle * 0.0174532925199432;
			
			alpha2 = alpha * alpha;
			alpha3 = alpha2 * alpha;
			alpha4 = alpha2 * alpha2;
			alpha5 = alpha2 * alpha3;
			
			sinus = alpha - (alpha3 / 6.0) + (alpha5 / 120.0) - ((alpha2 * alpha5) / 5040.0);
			cosinus = 1.0 - ((alpha2 / 2.0) - (alpha4 / 24.0) + ((alpha2 * alpha4) / 720.0) - ((alpha4 * alpha4) / 40320.0));
			tangent = sinus / cosinus;
			
			if (tangent < tangentPositive && incrementAngle >= 1)
			{
				anglePrevious = angle;
				angle += incrementAngle;
			}
			else if (tangent < tangentPositive && incrementAngle < 1 && error < 9)
			{
				anglePrevious = angle;
				angle += incrementAngle;
				
				error++;
			}
			else if (tangent == tangentPositive || decimal == 4 + 1)
			{
				quickSearch = true;
			}
			else
			{
				incrementAngle /= 10;
				angle = anglePrevious + incrementAngle;
				
				decimal++;
				error = 0;
			}
			
			if (angle > 90.0001)
			{
				angle = 89.9999;
				quickSearch = true;
			}
		}
		
		if (TANGENT < 0)
		{
			angle = -angle;
		}
	}
	
	return angle;
}
Fonction arctan2 :

Code : Tout sélectionner

float arctan2 (const float X, const float Y)
{
	const float TANGENT = Y / X;
	float angle = 0;
	float anglePrevious = 0;
	float sinus = 0;
	float cosinus = 0;
	float tangent = 0;
	float tangentPositive = 0;
	float alpha = 0;
	float alpha2 = 0;
	float alpha3 = 0;
	float alpha4 = 0;
	float alpha5 = 0;
	float incrementAngle = 10;
	unsigned char decimal = 0;
	unsigned char error = 0;
	bool quickSearch = false;
	
	if (TANGENT <= -9999999999999999)
	{
		angle = -90;
	}
	else if (TANGENT == -1)
	{
		angle = -45;
	}
	else if (TANGENT == 0)
	{
		angle = 0;
	}
	else if (TANGENT == 1)
	{
		angle = 45;
	}
	else if (TANGENT >= 9999999999999999)
	{
		angle = 90;
	}
	else
	{
		if (TANGENT < 0)
		{
			tangentPositive = -TANGENT;
		}
		else
		{
			tangentPositive = TANGENT;
		}
		
		while (quickSearch == false)
		{
			alpha = angle * 0.0174532925199432;
			
			alpha2 = alpha * alpha;
			alpha3 = alpha2 * alpha;
			alpha4 = alpha2 * alpha2;
			alpha5 = alpha2 * alpha3;
			
			sinus = alpha - (alpha3 / 6.0) + (alpha5 / 120.0) - ((alpha2 * alpha5) / 5040.0);
			cosinus = 1.0 - ((alpha2 / 2.0) - (alpha4 / 24.0) + ((alpha2 * alpha4) / 720.0) - ((alpha4 * alpha4) / 40320.0));
			tangent = sinus / cosinus;
			
			if (tangent < tangentPositive && incrementAngle >= 1)
			{
				anglePrevious = angle;
				angle += incrementAngle;
			}
			else if (tangent < tangentPositive && incrementAngle < 1 && error < 9)
			{
				anglePrevious = angle;
				angle += incrementAngle;
				
				error++;
			}
			else if (tangent == tangentPositive || decimal == 4 + 1)
			{
				quickSearch = true;
			}
			else
			{
				incrementAngle /= 10;
				angle = anglePrevious + incrementAngle;
				
				decimal++;
				error = 0;
			}
			
			if (angle > 90.0001)
			{
				angle = 89.9999;
				quickSearch = true;
			}
		}
		
		if (TANGENT < 0)
		{
			angle = -angle;
		}
		
		if (X < 0)
		{
			if (Y >= 0)
			{
				angle += 180;
			}
			else
			{
				angle -= 180;
			}
		}
	}
	
	return angle;
}


Exemples pour se servir des fonctions
Arrondir des nombres décimaux :

Des calculs complexes en virgule flottante (float), comprenez en nombre décimaux, sont parfois nécessaires afin de conserver la précision tout au long des opérations arithmétiques. Mais la finalité de ces opérations se retrouveront souvent dans un but de faire fonctionner des systèmes prenant en entrée uniquement des nombres entiers. Il est donc nécessaire d'arrondir le résultat en toute fin du calcul.

Exemple pour arrondir un nombre décimal à l'entier inférieur :

Code : Tout sélectionner

int main()
{
	floor (14.6);
	//la fonction retourne la valeur 14
	
	return 0;
}
Dans l'exemple ci-dessus, la fonction statique floor est appelée, elle prend en paramètre 14.6, le nombre décimal à arrondir à l'entier inférieur, et retourne (dans ce cas de figure) le nombre entier 14.

Exemple pour arrondir un nombre décimal à l'entier le plus proche :

Code : Tout sélectionner

int main()
{
	round (23.7);
	//la fonction retourne la valeur 24
	
	return 0;
}
Dans cet exemple la fonction statique round est appelée, elle prend en paramètre 23.7, le nombre décimal à arrondir à l'entier le plus proche, et retourne le nombre entier 24.

Exemple pour arrondir un nombre décimal à l'entier supérieur :

Code : Tout sélectionner

int main()
{
	ceil (5.12);
	//la fonction retourne la valeur 6
	
	return 0;
}
Ici la fonction statique ceil est appelée, elle prend en paramètre 5.12, le nombre décimal à arrondir à l'entier supérieur, et retourne le nombre entier 6.



Créer des interpolations de courbes :

Il est très simple avec les fonctions de courbes que je propose de changer des valeurs d'échelle, d'interpoler des courbes vers d'autres valeurs, tout en ajoutant de l'exponentiel afin d'adoucir ou de rendre plus vif l'évolution des courbes ainsi créées. Il est également possible de créer des interpolations dissymétriques autour d'un centre arbitraire, mettant en jeu de part et d'autre deux types d'interpolations différentes (linéaires et exponentielles positives et négatives).

Exemple pour créer une interpolation linéaire d'une courbe :

Code : Tout sélectionner

int main()
{
	curve (-25, 50, 100, 1, 10, 0);
	//la fonction retourne la valeur 6.4
	
	return 0;
}
Dans l'exemple ci-dessus, la fonction statique curve est appelée prenant plusieurs paramètres :
- Le 1er paramètre -25 est le point initial de la courbe.
- Le 2ème paramètre 50 est le point courant de la courbe.
- Le 3ème paramètre 100 est le point final de la courbe.
- Le 4ème paramètre 1 est le point initial de l'interpolation souhaitée.
- Le 5ème paramètre 10 est le point final de l'interpolation souhaitée.
- Le 6ème paramètre 0 défini le type d'interpolation (0 = linéaire) à partir du point initial vers le point final.

Le résultat du calcul est 6.4.

À noter que les valeurs indiquées en paramètre peuvent indifféremment être positives ou négatives et inférieures ou supérieures les unes par rapport aux autres, la fonction curve est prévue à cet effet.

Exemple pour créer une interpolation exponentielle d'une courbe :

Code : Tout sélectionner

int main()
{
	curve (-25, 50, 100, 1, 10, 40);
	//la fonction retourne la valeur ≈ 1.317 (valeur arrondie)
	
	return 0;
}
L'exemple est identique au précédent, sauf le 6ème paramètre 40 (différent de 0 donc non-linéaire) qui permet une interpolation exponentielle positive, plus ce nombre est élevé, plus l'exponentielle est prononcée. Un nombre négatif produit une exponentielle négative, c'est-à-dire non pas une interpolation exponentielle qui évolue doucement proche du point initial de la courbe, mais plutôt évoluant rapidement proche du point initial pour terminer plus douce à l'approche du point final.

Le résultat du calcul est maintenant ≈ 1.317 (valeur arrondie).

Exemple pour créer une interpolation linéaire dissymétrique d'une courbe :

Code : Tout sélectionner

int main()
{
	wurve (0, 50, 70, 0, 9, 10, 0, 0);
	//la fonction retourne la valeur ≈ 9.428 (valeur arrondie)
	
	return 0;
}
Dans l'exemple ci-dessus la fonction statique wurve est appelée, voici le détail des paramètres (similaires à la fonction statique curve) :
- Le 1er paramètre 0 est le point initial de la courbe.
- Le 2ème paramètre 50 est le point courant de la courbe.
- Le 3ème paramètre 70 est le point final de la courbe.
- Le 4ème paramètre 0 est le point initial de l'interpolation souhaitée.
- Le 5ème paramètre 9 est le point central de l'interpolation souhaitée.
- Le 6ème paramètre 10 est le point final de l'interpolation souhaitée.
- Le 7ème paramètre 0 défini le type d'interpolation (0 = linéaire) à partir du point central vers le point initial.
- Le 8ème paramètre 0 défini le type d'interpolation (0 = linéaire) à partir du point central vers le point final.

Le résultat du calcul est ≈ 9.428 (valeur arrondie).

À l'instar de la fonction curve, les valeurs indiquées en paramètre avec la fonction wurve peuvent indifféremment être positives ou négatives et inférieures ou supérieures les unes par rapport aux autres.

Exemple pour créer une interpolation double exponentielle centrée d'une courbe :

Code : Tout sélectionner

int main()
{
	wurve (0, 473, 1023, 1000, 1500, 2000, 20, 20);
	//la fonction retourne la valeur ≈ 1498.069 (valeur arrondie)
	
	return 0;
}
Ci-dessus la fonction statique wurve prend en entrée la valeur d'un potentiomètre pouvant varier de 0 à 1023, c'est la courbe à interpoler, les valeurs d'interpolation vont de 1000 à 2000 en passant par un centre à 1500, ce centre sert à créer une double exponentielle centrée sur 1500 ayant des valeurs de 20 (non-linéaire) de part et d'autre de ce point central (ou neutre).

Le résultat du calcul est ≈ 1498.069 (valeur arrondie).

Cette simple expression pourrait servir à transposer un ordre analogique via un potentiomètre (0 à 1023) vers un signal PWM (pouvant varier de 1000 à 2000 microsecondes) dans le but d'asservir un servo-moteur.

Beaucoup de mes projets utilisent les fonctions de courbes, car elles permettent de transposer facilement des valeurs d'un domaine vers un autre, sans pour autant compliquer la programmation (une ligne de programme est utilisée soit un seul appel de fonction et quelques paramètres).



Cadrer une valeur dans un intervalle :

Il peut être utile de solliciter une fonction dédiée lorsque nous souhaitons qu'une valeur ne sorte pas d'un certain intervalle, sans être obligé de rajouter les conditions logiques nécessaires à cette fonctionnalité dans notre programme (si inférieur ou égal à, si supérieur ou égal à, etc...), ce qui permet de diminuer le nombre d'instructions visibles et d'augmenter la lisibilité du code source.

Exemple pour cadrer une valeur dans un intervalle :

Code : Tout sélectionner

int main()
{
	range (-10, 23, 10);
	//la fonction retourne une valeur qui ne sortira jamais de l'intervalle -10 à 10
	
	return 0;
}
Dans l'exemple ci-dessus, la fonction statique range limite l'intervalle que peut prendre le nombre 23, ceci dans un cadre -10 à 10. La fonction retourne alors le nombre 10.

Les valeurs indiquées en paramètre peuvent indifféremment être positives ou négatives et inférieures ou supérieures les unes par rapport aux autres, la fonction range est implémentée à cet effet.



Calculer la moyenne de deux valeurs :

De même que la fonction présentée ci-dessus, une fonction pour trouver la moyenne de deux nombres (ou centre) semble facultative, néanmoins elle reste bien pratique !

Exemple pour calculer la moyenne de deux valeurs :

Code : Tout sélectionner

int main()
{
	center (125, 85.3);
	//la fonction retourne la valeur 105.15
	
	return 0;
}
Dans l'exemple ci-dessus la fonction statique center prend en paramètre les nombres 125 et 85.3, elle retourne donc la moyenne de ces deux nombre, soit 105.15.

L'ordre des nombres indiqués en paramètre à la fonction statique center peuvent être permutés indifféremment.



Calculer la puissance d'un nombre :

La puissance d'un nombre est le résultat de la multiplication répétée (via un exposant) de ce nombre avec lui même.

Exemple pour calculer la puissance d'un nombre :

Code : Tout sélectionner

int main()
{
	pow (5, 4);
	//la fonction retourne la valeur 625
	
	return 0;
}
Ici le nombre 5 représente le nombre à multiplier avec lui-même, 4 est l'exposant, soit le calcul 5 x 5 x 5 x 5 = 625.

Le nombre à multiplier avec lui même ainsi que l'exposant peuvent être positifs, nuls, ou négatifs.



Calculer la racine carrée d'un nombre :

Le résultat de la racine carrée d'un nombre, est un nombre qui, multiplié par lui-même, donne le radicande (soit le nombre entré en paramètre à la fonction).

Exemple pour calculer la racine carrée d'un nombre :

Code : Tout sélectionner

int main()
{
	sqrt (25);
	//la fonction retourne la valeur 5
	
	return 0;
}
Ci-dessus le nombre 25 est le résultat du nombre 5 multiplié par lui-même (5 x 5 = 25), la fonction retourne donc le nombre 5.



Calculer la factorielle d'un nombre :

La factorielle d'un nombre est le produit des nombres entiers strictement positifs inférieurs ou égaux à ce nombre. Cet algèbre permet d'effectuer des approches du nombre Pi, de faire converger des équations pour obtenir le sinus, le cosinus, etc...

Exemple pour calculer la factorielle d'un nombre :

Code : Tout sélectionner

int main()
{
	fact (7);
	//la fonction retourne la valeur 5040
	
	return 0;
}
Dans l'exemple ci-dessus la factorielle du nombre 7 entré en paramètre donne le résultat 5040, car 1 x 2 x 3 x 4 x 5 x 6 x 7 = 5040.

Par convention la factorielle du nombre 0 est 1.



Les fonctions sinus, cosinus, et tangente :

Les fonctions trigonométriques élémentaires comme sinus, cosinus, ou encore tangente s'avèrent utiles dans le domaine des automates programmables afin d'obtenir la position angulaire d'un robot, calculer la trajectoire d'un objet à l'aide d'un gyroscope, etc...

Attention, mes fonctions trigonométriques sin (sinus), cos (cosinus), et tan (tangente) prennent en entrée un angle en degrés (et non pas en radians).

Exemple pour calculer le sinus d'un angle :

Code : Tout sélectionner

int main()
{
	sin (30);
	//la fonction retourne la valeur 0.5
	
	return 0;
}
Dans cet exemple le sinus de l'angle 30 degrés est 0.5.

Exemple pour calculer le cosinus d'un angle :

Code : Tout sélectionner

int main()
{
	cos (45);
	//la fonction retourne la valeur ≈ 0.707 (valeur arrondie)
	
	return 0;
}
Dans l'exemple ci-dessus, le cosinus de l'angle 45 degrés est ≈ 0.707 (valeur arrondie).

Exemple pour calculer la tangente d'un angle :

Code : Tout sélectionner

int main()
{
	tan (45);
	//la fonction retourne la valeur 1
	
	return 0;
}
Ci-dessus la tangente de l'angle 45 degrés est 1.



Les fonctions réciproques arc sinus, arc cosinus, arc tangente, et arc tangente 2 :

En complément des fonctions sinus, cosinus, et tangente, il est fort utile de disposer des fonctions réciproques comme arc sinus, arc cosinus, arc tangente, et arc tangente 2.

Attention, mes fonctions trigonométriques arcsin (arc sinus), arccos (arc cosinus), arctan (arc tangente), et arctan2 (arc tangente à partir de deux arguments x et y) retournent en sortie un angle en degrés (et non pas en radians).

Exemple pour trouver l'angle à partir d'un sinus :

Code : Tout sélectionner

int main()
{
	arcsin (0.5);
	//la fonction retourne la valeur 30
	
	return 0;
}
Dans l'exemple ci-dessus, un sinus de 0.5 correspond à un angle de 30 degrés.

Exemple pour trouver l'angle à partir d'un cosinus :

Code : Tout sélectionner

int main()
{
	arccos (0.707);
	//la fonction retourne la valeur ≈ 45.008 (valeur arrondie)
	
	return 0;
}
Avec la fonction statique arccos, on trouve qu'un cosinus de 0.707 correspond à un angle de ≈ 45.008 degrés (valeur arrondie).

Exemple pour trouver l'angle à partir d'une tangente :

Code : Tout sélectionner

int main()
{
	arctan (1);
	//la fonction retourne la valeur 45
	
	return 0;
}
Une tangente de 1 correspond à un angle de 45 degrés.

Exemple pour trouver l'angle à partir de la tangente de deux arguments x et y (ou fonction circulaire réciproque à quatre cadrans) :

Code : Tout sélectionner

int main()
{
	arctan2 (0.5, 0.5);
	//la fonction retourne la valeur 45
	
	return 0;
}
Dans l'exemple ci-dessus, une tangente à partir de deux arguments x égal à 0.5 et y égal à 0.5 correspond à un angle de 45 degrés.



Récapitulatif des paramètres des fonctions :

Code : Tout sélectionner

static signed long floor (const float VALUE);
static signed long round (const float VALUE);
static signed long ceil (const float VALUE);
static float curve (const float POSITION_START, const float POSITION_CURRENT, const float POSITION_END, const float INTERPOLATION_START, const float INTERPOLATION_END, const float CURVE);
static float wurve (const float POSITION_START, const float POSITION_CURRENT, const float POSITION_END, const float INTERPOLATION_START, const float INTERPOLATION_CENTER, const float INTERPOLATION_END, const float CURVE_START, const float CURVE_END);
static float range (const float RANGE_START, const float VALUE_CURRENT, const float RANGE_END);
static float center (const float VALUE_START, const float VALUE_END);
static float pow (const float NUMBER, const unsigned long EXPONENT);
static float sqrt (const float RADICAND);
static unsigned long long fact (const unsigned long INTEGER);
static float sin (const float ANGLE);
static float cos (const float ANGLE);
static float tan (const float ANGLE);
static float arcsin (const float SINUS);
static float arccos (const float COSINUS);
static float arctan (const float TANGENT);
static float arctan2 (const float X, const float Y);


Les fonctions ci-dessus simplifient grandement la mise en œuvre de nombreuses applications, vous pouvez combiner les fonctions entres-elles et obtenir des résultats étonnants de complexité !

Si vos applications requièrent des fonctions mathématiques qui ne sont pas présentes ici, libre à vous d'en ajouter si besoin ;)


Avatar du membre
sylvainmahe
Bicopter
Messages : 48
Enregistré le : jeu. 3 juil. 2014 18:21
Réputation : 4

Re: Programmer sans <math.h>

Message non lu par sylvainmahe »

Vous pouvez jouer avec ma fonction curve à l'aide de ce traceur de fonctions : https://www.desmos.com/calculator/c0xkpyzuoy

Commencez par bouger le paramètre s, les droites noires vous permettent de comprendre comment fonctionne la partie non-linéaire de ma fonction curve :)


Répondre

Retourner vers « Codes et Programmations »